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Disjoining potential and spreading of thin liquid layers in the diffuse-interface model
coupled to hydrodynamics
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The hydrodynamic phase field model is applied to the problem of film spreading on a solid surface. The
disjoining potential, responsible for modification of the fluid properties near a three-phase contact line, is
computed from the solvability conditions of the density field equation with appropriate boundary conditions
imposed on the solid support. The equations describing the motion of a spreading film are derived in the
lubrication approximation~in the limit of small contact angles!. In the case of quasiequilibrium spreading, it is
shown that the correct sharp-interface limit is obtained, and sample solutions are obtained by numerical
integration. It is further shown that evaporation or condensation may strongly affect the dynamics near the
contact line, and that it is necessary to account for kinetic retardation of the interphase transport to build up a
consistent theory.

PACS number~s!: 68.10.Cr, 68.45.Gd
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I. INTRODUCTION

One of long-standing hydrodynamic riddles is the nat
of viscous flow in the vicinity of a three-phase~gas-liquid-
solid! contact line, and the related problem of ‘‘true’’ an
‘‘apparent’’ dynamic contact angles@1,2#. The answer to the
riddle must be, in fact, physicochemical rather than pur
hydrodynamic, since it depends on processes in the imm
ate vicinity of the three-phase boundary. The early detec
paradox of a logarithmically divergent force required to d
place the contact line@3# directly follows from the multival-
uedness of the velocity field at the contact line—if stand
viscous hydrodynamics with a no-slip condition on the so
surface is to be believed. This paradox has been swept u
the carpet rather than resolved by introducing a bound
condition with a stress- or velocity-dependent slip@4,5#. A
drawback of hydrodynamic slip theories lies in their inhere
inability to predict the dynamic contact angle. As a reme
empirical relationships between the velocity and cont
angle have to be introduced in model computations.

Clearly, intermolecular forces, that determine the sta
contact angle to begin with, should have a say in a dyna
situation. Their direct action is, however, restricted to
immediate vicinity of the contact line, which is unobservab
under available experimental resolution, so that an appa
contact angle seen at mesoscopic distances has to be str
influenced by outer hydrodynamic conditions. Near the c
tact line itself, the properties of the fluid are different fro
those in the bulk, and even a common continuum descrip
becomes questionable.

Different approaches to a description of fluid motion
the vicinity of the three-phase boundary have been tried d
ing the last two decades. The most straightforward way i
introduce intermolecular forces into the hydrodynamic eq
tions of motion. This would lead, strictly speaking, to ve
difficult nonlocal equations, also incorporating the effects
PRE 621063-651X/2000/62~2!/2480~13!/$15.00
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variable density and diffuse interfaces@6#. Even in the sharp-
interface limit, a nonlocal dependence on the shape of
free interface leads to integrodifferential equations which
body as yet has attempted to solve. A rational formulation
possible in lubrication approximation@2#, when the action of
intermolecular forces reduces to a simple expression for
joining pressure between parallel vapor-liquid and liqu
solid interphase boundaries@7#. This, however, does no
eliminate the stress singularity, unless in the case of co
plete wetting, when a sharp contact line is replaced b
gradual transition from a precursor film to a liquid film o
macroscopic thickness@2#. At the same time, the usual ex
pression for London–van der Waals forces leads to a disj
ing pressure divergent at small distances, thus necessitat
molecular-scale cutoff and leaving the ‘‘true’’ contact ang
undetermined. This may be formally corrected by taking
count of surface inclination@8#, but the correction become
effective at nonphysical submolecular distances.

A radical solution is to abandon the continuum approa
altogether in the immediate vicinity of the contact line. S
is feasible on a microscopic scale, where it may follow fro
activated diffusion of a first molecular layer@9#. Direct nu-
merical simulations of molecular dynamics clearly demo
strate the effects of a diffuse boundary and effective slip
molecular distances@10,11#. Such simulations, however
cannot involve macroscopic volumes, and no ways to inc
porate them in a macroscopic description are known.
alternative approach is to retain a continuum description
to treat either a vapor-liquid interface or, fluid-solid inte
face, or both, as a separate phase with properties diffe
from the bulk fluid. This approach was adopted by Shik
murzaev@12#, who also relied on deviations from thermod
namic equilibrium near the contact line as well as on
presence of a residual film to avoid the divergences,
explained the difference between the static and dynamic c
tact angles.

Treating the vapor-liquid interface as a separate ph
2480 ©2000 The American Physical Society
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may indeed, be justified when surfactants are present,
otherwise a more natural way to account for its special pr
erties of is to consider it as a region interpolating betwe
the two phases. The origin of this approach is in the diffu
interface model going back to van der Waals himself@13#.
Much later, it became prominent in phase field models@14#,
used mostly in the phenomenological theory of solidificat
where a fictitious phase field, rather than density, was use
a continuous variable changing across the interphase bo
ary. The theory of van der Waals was widely used for d
scribing equilibrium fluid properties, including surface te
sion and line tension in three-phase fluid systems@15#.
Application of this theory to dynamical processes in fluids
much more difficult, as it requires coupling to hydrodyna
ics. Applicable equations were formulated rather recen
@16,17#. Seppecher@18# and Jacqmin@19# solved the equa-
tions of the continuous density field coupled to the Sto
equation numerically in a small inner region near the con
line, matching it to the outer region where the stand
sharp-boundary hydrodynamic limit applies. The promin
feature of flow in the inner region was a substantial advec
mass transport through the interphase boundary, wh
served as an effective slip mechanism relieving the visc
stress singularity.

The aim of this paper is a rational analysis of the hyd
dynamic phase field~diffuse interface! model based on the
lubrication approximation. After formulating the basic equ
tions in Sec. II, we reiterate the equilibrium relations defi
ing the surface tension on all three kinds of interpha
boundaries~Sec. III A!, and discuss appropriate bounda
conditions on the solid surface~Sec. III B!. This is followed
by approximate computation of the density profile, equil
rium chemical potential and energy of the fluid layer~Secs.
III C and III D!. The results of 1d computations further serv
as a basic ‘‘vertical’’ structure of the lubrication theory
Sec. IV, where a slow dependence on the ‘‘horizontal’’ c
ordinate is added. We show that the equations give a cor
sharp-interface limit in both static and dynamic situatio
The evolution equation derived in the lubrication approxim
tion can be integrated numerically, yielding the depende
of the spreading velocity on a driving force. We shall see
Sec. IV D that no singularities develop in the case when
boundary condition fixes a unique fluid density at the so
surface.

This ‘‘quasiequilibrium’’ theory is modified in Sec. V
where a change of chemical potential across the fluid laye
taken into account. We start by discussing the ‘‘vertica
structure of chemical potential associated with viscous
kinetic retardation of steady motion of a vapor-liquid inte
face, and identify the dilute~vapor! phase as the locus o
substantial variation of chemical potential. The poten
drop is then computed numerically in Sec. V B, yielding
relation between the disjoining potential and the flux acr
isodensity lines. This flux, which may be interpreted as
cipient evaporation or condensation, may help to allevi
viscous stress singularity when the boundary conditi
make a sharp three-phase contact line necessary.

II. BASIC EQUATIONS

A general phase field model coupled to hydrodynam
includes the following elements:~1! a dynamic equation o
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the phase field variable~s! derived from an appropriate en
ergy functional;~2! a constituent relation defining the depe
dence of pressure or chemical potential on the phase v
able~s!; ~3! the continuity equation; and~4! the equation for
a flow field u(x,t).

In a one-component system, the appropriate phase
variable is the densityr. General hydrodynamic equation
for non-equilibrium systems with diffuse interphase boun
aries are found in the recent review by Andersonet al. @17#.

The equation for the static density distribution is deriv
from the energy functional

F5E Ld3x, L5r f ~r!1 1
2 Ku“ru22mr, ~1!

wherem is the Lagrange multiplier~chemical potential! that
serves to insure the mass conservation condition. The co
sponding Euler-Lagrange equation is

K¹2r2]r@r f ~r!#1m50, ~2!

We shall suppose that the functionf (r) is such that Eq.~2!
admits two stable solutions,r5rv andr5r l , separated by
unstable solutionsr5ru andrv,ru,r l . The solutions are
at Maxwell construction@i.e., have an equal energyr f (r)] at
m50, so that the chemical potential can serve as a bias
rameter.

The density field is coupled to hydrodynamics through
capillary tensor

T5LI2“r ^ ]L/]“r, ~3!

whereI is the unity tensor. Eliminating the Lagrange mul
plier with the help of Eq.~2! yields

T5~ 1
2 Ku“ru21Kr¹2r2p!I2K“r ^“r, ~4!

where the thermodynamic pressure is defined asp
5r2f 8(r).

Neglecting the inertial effects, the flow is described by t
generalized Stokes equation

“•~T1S!1F50, ~5!

where F52“V is an external force andS is the viscous
stress tensor with the components

Sjk5h~] jvk1]kv j !1~z2 2
3 h!d jk“•v, ~6!

whereh, andz are dynamic viscosities~generally, dependen
on r), and v j are components of the velocity fieldv. The
system of equations is closed by the continuity equation

r t1“•~rv!50. ~7!

The Stokes equation~5! is rewritten, using Eq.~3!, as

2“~p1V!1Kr“¹2r1“•S50. ~8!

A more transparent equivalent form, which can be obtain
directly from Eq. ~3!, includes, instead of pressure, th
chemical potential defined by Eq.~2!:

2“V2r“m1“•~h“v!1“@~z1 1
3 h!“•v#50. ~9!
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2482 PRE 62LEN M. PISMEN AND YVES POMEAU
Further on, we shall compute the density and veloc
field, assuming that the characteristic macroscopic lengthL*
of the flow field, as well as the scale of density variation
the tangential direction, far exceed the characteristic th
ness (K/ f * )1/2 of the diffuse interface, wheref * is a char-
acteristic value off (r). This ‘‘thin interface’’ approximation
is apt to break down in the vicinity of the contact line, unle
it is complemented by the ‘‘lubrication’’ approximation
which assumes a small angle between the~diffuse! inter-
phase boundary and the solid surface. The applicability
this approximation also depends on the boundary condit
at the solid surface.

III. EQUILIBRIUM RELATIONS

A. Surface tension and Young-Laplace relation

Before approaching our main task of the analysis of m
tion in the vicinity of a three-phase boundary, it is necess
to clarify relevant properties of the dynamic phase fie
model for the basic case of a diffuse interface between se
infinite phases. For a static interface, the phase field de
mines the equilibrium surface tension in a usual way@13,15#.
The standard surface tension is defined as the energy pe
area of a flat interface separating two semi-infinite phas
Static solutions dependent only on the coordinatez normal to
the interface can be easily found by solving Eq.~2!. Rescal-
ing the coordinate by the characteristic width of the diffu
interface, and denoting

g~r!5]r@r f ~r!#, ~10!

we have

r9~z!2g~r!1m50. ~11!

The two static solutions are approached atz→6`, and the
boundary is static atm50.

The interfacial energy is computed most easily by us
as a dependent variable the distortion energyT5 1

2 rz
2 . Then

Eq. ~11! is rewritten as

T8~r!2g~r!1m50. ~12!

Integrating this proves that the distortion energy equals
potential energy at any point:

1
2 rz

25r f ~r!2mr. ~13!

Using this ‘‘virial theorem,’’ we compute

s5E
2`

`

rz
2dz5E

rv

r lA2@r f ~r!2mr#dr. ~14!

Solid-fluid interactions are characterized by an appro
ate boundary condition at the solid surface, as elabora
below. Generally, the density at the solid surface will
different in the vapor or liquid phase; we denote the resp
tive values asrsv andrsl . Accordingly, the ‘‘liquid-solid’’
or ‘‘vapor-solid’’ surface tensions l or sv is computed, re-
spectively, by replacing one of the integration limits in E
~14! by rsl or rsv .

In the vicinity of a critical point, the appropriate function
restricted to small deviations from the critical densityrc , is
y
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a cubicg(r)5r2rc2(r2rc)
3. Since our aim is a qualita

tive description of a system far from criticality involving th
vapor phase with negligible density, we shall choose
shifted cubic

g~r!5r~122r!~12r!, ~15!

which is at Maxwell construction atm50. Then f (r)
5 1

2 r(12r)2 and the equilibrium surface tensions are co
puted as

s5E
0

1

r~12r!dr5 1
6 ,

s l5E
rsl

1

r~12r!dr5 1
6 ~12rsl!

2~112rsl!,

sv5E
0

rsv
r~12r!dr5 1

6 rsv
2 ~322rsv!. ~16!

The first formula can also be obtained directly using t
standard kink solution that approachesrv50 at z→` and
r l51 at z→2`:

r0~z!5~11ez!21. ~17!

This solution may be, however, distorted in the vicinity of
solid wall.

The expressions fors, sv , ands l combine to the Young-
Laplace formula

sv2s l5s cosu, ~18!

whereu is the ‘‘standard’’ contact angle that should be o
served at distances much larger than the thickness of
transition layer, i.e., unity in the dimensionless units of E
~11!.

The Young-Laplace formula is a consequence of the N
ether theorem applied to solutions of Eq.~2!. Suppose that
the solid surface is coincident with thex axis (z50) and
r(x,z) tends torv at z→`. Very far on the left (x→2`)
the vapor is close to the solid, so thatr(x,z) tends to a
solution r(z) of Eq. ~11! with m50, such thatr(0)5rsv
andr→rv asz→`. On the other end, forx→1`, the liq-
uid is close to the solid, that is,r(x,z) tends, forx large
positive andz!x, toward a solutionr(z) of Eq. ~11! with
m50 andr(0)5rsl , and r→r l as z becomes very large
For a givenx, there is, however, a value ofz, close to tanu,
such that there is a liquid-vapor interface and, forz
@x tanu, r becomes very close torv , as requested. If
r(x,z) satisfies these conditions, the liquid-vapor interface
inclined at the angleu to the solid on scales much larger tha
the microscopic interface thickness~although this angle may
change at a closer approach!.

The Young-Laplace formula follows from the invarianc
of the problem with respect to translations in thex direction.
Multiply Eq. ~2! ~with K rescaled to unity! by ]r/]x, and
integrate overz from z50 to `. This yields, after integrating
by parts,
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d

dx H E
0

`

@ 1
2 ~rx

22rz
2!2r f ~r!#dzJ 50. ~19!

The braced expression is constant along thex axis. This con-
stant can be computed forx very large negative and ver
large positive in the configuration just described. Equat
the results, one obtains

sv5s l1E
2`

`

$ 1
2 @r08~z!#2~cos2u2sin2u!2r f ~r!%

dz

cosu
,

wherez is the coordinate normal to the vapor-liquid inte
face, andr0(z) is the standard kink solution. The algebra
term reduces to12 @r08(z)#2 by Eq.~13!, and the final result is
the Young-Laplace formula~18!. The result is not influenced
by possible deviations from the standard contact angle
close approach to the solid surface, but, of course, hinge
the applicability of Eq.~2!. Since the actual inclination angl
is apt to change at large distances due to external forces,
as gravity or dynamic pressure, the ‘‘standard’’ angle may
fact be unobservable at either small or large distances f
the solid.

B. Boundary conditions

If the action of the solid on the density field is sho
ranged~compared to the thickness of the diffuse interface!, it
can be accounted for by appropriate boundary condition
the solid surface. The boundary conditions are usually
signed with the help of the Cahn construction@14,2# balanc-
ing the distortion energy, distributed over a layer of sa
order of magnitude as the thickness of the diffuse interfa
and the energy of fluid-solid interaction concentrated at
boundary. A more consistent way to arrive at the sa
boundary condition is to allow a nonvanishing variation
the density at the solid boundarydrs when the energy func
tional ~1! is varied. In one dimension, this leaves, after in
grating by parts, the boundary termr8(0)drs . If the depen-
dence of the fluid-solid interaction energy on the flu
density near the wall is expressed by a quadratic polynom

g~rs!5g02g1rs1
1
2 g2rs

2 , ~20!

the coefficient atdrs vanishes, provided

g12g2rs1r8~z!ur5rs
50, ~21!

which is the boundary condition equivalent to that obtain
through the Cahn construction~although the latter is ex
pressed in an awkward integral form, including a radi
with an indefinite sign!.

If one assumes that the solid-fluid interaction is sh
ranged compared to the thickness of the diffuse vapor-liq
interface, it is likely prevail locally in the vicinity of a solid
wall. This corresponds to the limiting case of very largeg1
andg2, when a simpler Dirichlet boundary conditionr5rs
is enforced on the solid surface. The rangerv,rs,r l then
corresponds to partial wetting.

With the latter boundary condition and the cubicg(r), the
contact angle is cosu52116rs

224rs
3 , and is close to 0 orp

when rs is close, respectively, to 1 or 0. Ifrs512a with
g
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0,a!1, we haveu52A3a. The contact angle is zero
~complete wetting! at rs>1. This ‘‘standard’’ angle has
nothing to do with a ‘‘true’’ contact angle at the solid su
face. The latter is not defined at all in the diffuse interfa
theory, since different isodensity levels behave in qual
tively different ways as the solid surface is approached. T
only level that hits the solid surface at the right angle isr
5rs ; the levels withr,rs are asymptotically parallel, and
those withr.rs antiparallel to the surface.

A more consistent way to derive the boundary conditi
is to start with a general expression for the energy of m
lecular interactions

F5E E r~x!r~x8!V~ ux2x8u!d3xd3x8. ~22!

The mean-field energy functional~1! can be obtained from
Eq. ~22! assuming that the density changes on a characte
tic scale far exceeding the range of the potentialV(ux
2x8u), and expandingr(x8)5r(x)1(x2x8)•“r(x)1•••.
The algebraic term in Lagrangian~1! is obtained in zero
order, and the distortion energy in the second order of
expansion. These expressions are modified when a s
boundary lies within the range of the interaction potenti
The influence of the wall may be particularly strong in t
standard case of Lennard-Jones interaction potential o
simplified expressionV}(x2x8)26, with a short-range hard
core cutoff, which gives the interaction energy diverging
z23 with the distance from the solid surface. The divergi
part of the energy may be taken as the surface energy po
tial that has to be minimized to obtain the density at the so
surfacers . Under conditions when the bulk potential ha
two minima corresponding to low~vapor! and high~liquid!
densities, the surface potential may also have two mini
but the respective values, say,rsl andrsv , would generally,
be different from the bulk valuesr l andrv . This brings us to
a Dirichlet boundary condition similar to that postulate
above, but with the essential difference that two distinct v
ues are allowed, and are likely to be chosen at the s
surface contacting the liquid and vapor phases, respectiv
Unlike the case when the surface density is unique,
isodensity levels in the rangersv<r<rsl hit the solid sur-
face.

The boundary condition~21! also allows distinct density
levels rsvÞrsl in the areas of the solid surface borderin
either a vapor or a liquid. Assuming, for example, 0,g1
5a!1, g250, we haversv'a, rsl'11a. It appears,
however, quite unnatural that the main term in the dens
expansion fixes the density gradient rather than the den
itself, so that nonmonotonic density profiles are forbidden
the above example and, conversely, enforced wheng1 is
negative.

C. Density profile in a thin layer

The interaction between the solid surface and the in
phase boundary can be computed most easily in the
when both surfaces are parallel and normal to thez axis. The
static solutionr(z) can be found by solving Eq.~11! subject
to the appropriate boundary conditions at the solid w
Solving the one-dimensional phase field equation in the fo
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of Eq. ~12! is elementary; for cubicg(r), the exact solution
is expressed in elliptic functions. Finding an approxima
solution satisfying the boundary conditionr(0)5rs512a
with uau!1 is, however, more elucidating.

We construct the solution by perturbing a standard k
solution r0(z2h) centered atz5h, e.g., Eq.~17! for the
cubic g(r). The actual solution is approximated to the ze
order by the standard kink only whenr0(2h) is sufficiently
close to unity; thush must satisfy the conditionh. ln(1/a).
The density profile is expanded in the small parametera:

r5r0~z2h!1ar1~z;h!1•••. ~23!

For the time being, we assumem50. Then the first-order
equation is

r19~z!1g8~r0!r150, ~24!

subject to the boundary condition

r1~0!5211a21@12r0~2h!#'211c, ~25!

wherec5a21e2h<1.
Due to the exponential decay of interactions, the corr

tion to the zero-order solution is actually of a higher order
magnitude everywhere except anO(ln a21) vicinity of the
wall, wherer0 is close to unity. On this interval, Eq.~24! can
be replaced by the equation with constant coefficients:

r19~z!2r1~z!50. ~26!

The solution decaying atz→` is

r1~z!52e2z~12c!. ~27!

At a.0, h. ln(2/a), the combined function

ra5r01ar15~11ez2h!212e2z~a2e2h! ~28!

reaches a maximum atz5 1
2 ln(aeh21).0 ~Fig. 1!. Such a

solution describes a liquid layer sandwiched between the
por and the solid. At smaller values ofh, the maximum dis-
appears, and the solution can be interpreted as a pure v
phase thickening near the solid wall. The same solution
plies ata,0 when the density increases at the solid surfa
whether it is approached from the liquid phase or direc
from the vapor phase. The approximation breaks down

FIG. 1. Stationary density profiles. Numbers indicate the val
of the nominal thicknessh.
e

k

-
f

a-

por
p-
e,
y
at

h, ln(1/a), which is, in fact, below the minimal possibl
thickness of the dense layer in this model.

If the boundary condition allows two alternative fluid de
sities, a solution withr(0)5av!1 may be also possible
This solution, corresponding to vapor phase adjacent to
solid surface, is simplyr'ave2z; this solution can be
viewed as a tail of the basic kink centered atz5 ln av,0 ~i.e.,
in the nonphysical region!.

Nonmonotonic density profiles are unstable. Since, ho
ever, the influence of the wall decays exponentially with t
distance, the dynamics is practically frozen whenever
interphase boundary is separated from the wall by a la
thick compared to the characteristic width of the diffuse
terface.

D. Equilibrium chemical potential and energy

A static solution with a fixedh exists only at a certain
fixed value ofm, which can be determined using a solvabili
condition of the first-order equation. In a wider context,
appropriate solvability condition serves to obtain an evo
tion equation for the nominal positionh of the interphase
boundary. The technique to derive solvability conditions
a problem involving a semi-infinite region and exponentia
decaying interactions is nonstandard, and therefore dese
special attention.

An inhomogeneous first-order equation has a gen
form

Lr11H~z!50, ~29!

containing an inhomogeneityH(z) and the linear operator

L5
d2

dz2
1g8~r0!. ~30!

When Eq.~29! is defined on an infinite axis, the solvabilit
condition of Eq. ~29! appears due to the presence of
eigenfunction ofL, with a zero eigenvalue related to th
translational symmetry of the kink. The eigenfunction, o
tained by applying the symmetry operatord/dz, is simply
r08(z). The solvability condition is fixed by the orthogonalit
of the inhomogeneity to this eigenfunction:

E
2`

`

r08~z!H~z!dz50. ~31!

In the presence of a solid boundary, a difficulty arises, ho
ever, since the translational invariance is broken and no
ily computable eigenfunction is available. In addition, t
orders of magnitudes in the perturbative scheme should
estimated in a nonstandard way in view of the exponen
decay of interactions@20#.

The difficulties are overcome with the help of asympto
matching technique similar to that employed in the theory
vortex dynamics@21#. The solvability condition is computed
similarly to Eq.~31!, using the translational eigenfunction o
the infinite axis, but the integration is not carried out over t
entire axis~which now extends into the unphysical regionz
,0), but starts at some locationz5z0.0, wherer differs

s
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from the asymptotic valuer51 by anO(a) increment. This
generates boundary terms in the solvability condition, wh
takes now the form

E
z0

`dr0~z2h!

dz
H~z!dz5Fdr0~z2h!

dz

dr1~z!

dz

2
d2r0~z2h!

dz2
r1~z!G

z5z0

.

~32!

The boundary values of the first-order solutionr18(z) are
obtained by solving the first-order equation~29! directly on
the interval 0<z<z0, where Eq.~29! can be replaced by th
equation with constant coefficients~26! with the added inho-
mogeneityH(z). The solution of this equation is

r1~z!5r1
(h)~z!1E

0

z

G~z2z!H~z!dz, ~33!

wherer1
(h) is given by Eq.~27!, andG(z2z) is the Green’s

function of Eq.~26!. The last term can be neglected for ce
tain inhomogeneities, provided the lower limit of the integ
in the left-hand side of Eq.~32! can be shifted to2` with-
out introducing a significant error. The matching is succe
ful when Eq. ~32! reduces to a form independent ofz0 in
leading order.

The simplest application of the above matching techniq
is the computation of a constant value of chemical poten
m5mc , required to keep the kink at equilibrium~possibly,
unstable! at a given locationz5h. In this case, the inhomo
geneity in Eq.~26! is just a constantH5mc , and the integral
in the left-hand side of Eq.~32! is mc@r0(`)2r0(z0)#5
2mc1O(a). Since this expression remains unchanged in
leading order whenz0 is shifted to 2`, i.e., r0(z0)51
2O(a) replaced by unity, it is sufficient to use in Eq.~32!
the first term of Eq.~33! only. Retaining the leading term
only, we obtain

mc[a2M ~h!52a2c~12c!52e2h~a2e2h!. ~34!

The first expression demonstrates that the computed ch
cal potentials in fact at most ofO(a2), although the equation
is nominally of the first order. The gained order of magnitu
is due to the fast decay of interactions. Since the compu
value is of a higher order, there is no need to correct
equilibrium profile computed in the preceding subsection
O(a). For a.0, the functionmc(h) passes a maximum a
the same valueh5 ln(2/a)5O(1) that marks the transition
from monotonic to nonmonotonic density profiles. Susta
ing a static profile requires a bias in favor of the liquid sta
and the value ofmc at the maximum represents the critic
value of chemical potential required to nucleate a thick liq
layer on the solid surface. Fora,0, mc in Eq. ~34! is nega-
tive, and increases monotonically withh; in this case, on the
contrary, a bias in favor of the vapor phase is necessar
keep the interface stationary.

The correction to energy, defined as
h

l

s-

e
l

e

i-

e
d
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-
,

to

E~h!5E
0

`Fr f ~r!1
1

2
rz

2Gdz5s1a2Ẽ~h!, ~35!

also turns out to be ofO(a2). The ‘‘virial theorem’’ used in
Eq. ~14! does not hold to this order when density is defin
by the first-order functionra . The best way to compute th
energy is to use the variational formulation directly to rela
it with the computed chemical potential. Requiring the on
dimensional energy functional~1! to be extremal with re-
spect toh, and usingr(z)5r0(z2h) in the last term, we
compute

dẼ

dh
52ME

0

`

r08~z2h!dz5M1O~a!. ~36!

IV. MOTION IN A THIN LAYER

A. Double-scale expansion

Two-dimensional motion can be rationally treated in t
familiar ‘‘lubrication approximation,’’ assuming a characte
istic scale in the ‘‘vertical’’ direction~normal to the solid
surface! to be much smaller than that in the ‘‘horizontal
~parallel! direction. When the interface is weakly incline
and curved, the density is weakly dependent on the coo
natex directed along the solid surface. Respectively, the v
tical velocityv is assumed to be much smaller than the ho
zontal velocityu. The scale ratio is determined by the conta
angle, and should be set atO(a)5O(Ad) to match the scal-
ing of the phase field. The velocitiesv andu corresponding
to weak disequilibrium of the phase field considered abo
will be consistently scaled if one assumes]z5O(1), ]x

5O(Ad), u5O(d3/2), andv5O(d2). It is further necessary
for a consistent scaling of the hydrodynamic equations t
the ‘‘constant’’ part of the chemical potentialm, associated
with interfacial curvature, disjoining potential, and extern
forces, and weakly dependent onx, be of O(d), while the
‘‘dynamic’’ part varying in the vertical direction and respon
sible for motion across isodensity levels, be ofO(d2). Fur-
ther in this section, we shall assume therefore thatm1V is
independent ofz; this assumption will be re-examined i
Sec. V.

In two dimensions, the termrxx is added to the inhomo
geneity in the first-order equation~29!. In this order, the
vertical density profile can be represented by the stand
kink solutionr0@z2h(x,t)#, and thex dependence is due t
slow variation ofh in the ‘‘horizontal’’ direction. Thus

rxx52r08~z2h!hxx1r09~z2h!hx
2 . ~37!

The respective contribution to the solvability condition is,
the leading order,

2hxxE
2`

`

@r08~z!#2dz52shxx , ~38!

while the contribution of the term containinghx
2 vanishes in

the leading order by symmetry.
Another possible contribution to the solvability conditio

may come from external forces. In the presence of grav
directed against thez axis, the equilibrium is achieved, ac
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2486 PRE 62LEN M. PISMEN AND YVES POMEAU
cording to Eq. ~9!, at m5m02a2Gz rather thanm5m0

5const. The rescaled acceleration of gravity is denoted
a2G, which presumes that it matches the other terms by
order of magnitude. The integral in Eq.~32! involving the
variable part ofm is mostly accumulated in the diffuse inte
face region, so that we have in the leading order

2GE
0

`

zr08~z2h!dz'Gh. ~39!

Collecting Eqs.~38! and ~39!, we obtain the expression fo
the hydrostatic chemical potential

m5d@M ~h!2shxx1G~h2z!#, ~40!

whereM (h) is defined by Eq.~34!.

B. Statics in lubrication approximation

Equation~40! will be used later on to investigate dynam
cal processes where the motion of the contact line is
volved. In this subsection we investigate the statics of t
lubrication approximation, and show how it relates to t
general Young-Laplace result on the static contact angle
seems to be important for the general consistency of
theory to have dynamical equations for the contact angle
reduce to the usual equilibrium theory in the absence of m
tion. In most realistic cases, the effect of gravity is negligib
near the contact line, since gravitational forces are m
weaker than molecular forces. Therefore, the statics of
contact angle, at scales in between molecular length sc
and the capillary length~that is the length scale beyon
which gravity plays a role!, depends on solutions of Eq.~40!
without the gravity termG(h2z). Moreover, as we want to
study equilibrium situations where a liquid-vapor interfa
merges with the solid surface, the chemical potentialm is set
to its equilibrium value 0, so that the equation under cons
eration is

M ~h!2shxx50. ~41!

In order to derive from this equation the Young-Lapla
condition, one can use relation~36! between the energy an
chemical potential computed in the end of Sec. III D. W
integrate Eq.~41! with the boundary conditions for the func
tion h(x) such that forx→2`, the vapor is close to the
solid, while forx→`, the liquid is close to the solid, until a
height h(x)'ux, u!1 where a liquid-vapor interface i
situated. The relevant first integral of Eq.~41! reads

1
2 shx

25Ẽ~h!2Ẽ~h0!, ~42!

whereh0 is the root ofM (h) that gives the thickness of th
precursor film lying between the solid and the vapor pha
h05 ln(1/a), in the model with a cubicf (r) and Dirichlet
boundary condition. The structure of Eq.~42! is obviously
similar to the Young-Laplace formula. The capillary ener
at very large negativex, Ẽ(h0), is nothing but the solid-
vapor surface tensionsv . The capillary energy at very larg
positive x where the vapor-liquid interface is far remove
from the solid is the sum of the independent contributions
the solid-liquid interface and a free liquid-vapor interfac
as
e

-
is

It
e
at
-

h
e

les

-

e,

f
.

Integrating up to very large positivex, where h'xu, one
therefore obtainsẼ(`)5s1s l . Using this in Eq.~42!, and
subtractings from both sides, yields

s2 1
2 su2's cosu5sv2s l , ~43!

which is the sought after Young-Laplace condition, deriv
from the equations of the lubrication approximation for t
position of the liquid-vapor interface.

C. Equations of motion in lubrication approximation

The horizontal velocityu is determined from the horizon
tal component of the Stokes equation. Adding gravity as
external force, we write the leading order equation as

2r0~z2h!Px1~huz!z50, ~44!

where the effective pressureP is defined as

P5Gax1M ~h!2shxx1G~h2z!. ~45!

This expression follows from Eq.~40!, with the addition of
the gravity term acting when the supporting plane is wea
inclined. The inclination anglea must be of O(Ad), to
match by order of magnitude the other terms in the equat
The density profile is given in the leading order by the sta
dard kink solution~17! centered at the nominal interface p
sition h(x), slowly varying in the horizontal direction.

The solution of Eq.~44! satisfying the no-slip boundary
condition on the solid boundary and the no stress condi
at infinity has a general form

u~z!5h21PxC~z;h!. ~46!

The functionC(z;h) depends on an assigned dependence
viscosity on density, but the fluxur0 in the dense layer~at z
not much larger thanh) is nearly the same for eitherh
5const orh}r, and is close to the standard lubrication s
lution C52z(h2 1

2 z) valid for incompressible Poiseuille
flow in a layer of thicknessh with a free boundary.

The evolution equation ofh is obtained by inserting Eqs
~17! and~46! in the continuity equation~7!, and integrating it
from 0 to `. Using the relations

E
0

`

r tdz52htE
0

`

r08~z!dz5ht1O~a!,

E
0

`

~rv !zdz50,

we obtain

ht5h21]x@Q~h!Px#, ~47!

where

Q~h!52E
0

`

r0~z2h!C~z,h!dz. ~48!

The function Q(h), computed numerically and plotted i
Fig. 2, differs only slightly from the respective function fo
the sharp interfaceQ0(h)5 1

3 h3 whenh exceeds its minimal



-
d

e-

-
in

no
se

s,
l
t
aa
u

ion

g

t

cr
t

f

n

ng

in

y
ing
be

d
y

ina-
ad-

in-
po-
im-
two
ua-

-

1 7

PRE 62 2487DISJOINING POTENTIAL AND SPREADING OF THIN . . .
admissible valueh05 ln(1/a). Taking into account small de
viations from the standard kink solution near the wall ad
only a higher-order correction.

D. Quasiequilibrium spreading

Apart from a slightly modified volumetric rate, the sp
cific contribution of the diffuse interface to Eq.~47! is car-
ried by the functionM (h), which is dependent on the bound
ary conditions on the solid surface and expresses disjoin
potential. It should be emphasized that this function is
given a priori but computed in the framework of the pha
field theory~Sec. III D!. The structure of Eq.~47! is identical
to that of standard equations of motion of thin liquid film
which are recovered at largeh when the disjoining potentia
becomes negligible. At smallh, the disjoining potential is no
singular as in the sharp-interface theories with van der W
interactions@2#. At the same time, the viscous stress sing
larity at the contact line is relaxed as the latter’s locat
becomes indefinite.

Steady flow of a liquid film under the action of disjoinin
potential and gravity can be described by Eq.~47!, rewritten
in the frame moving with a speedU. We shall assume tha
the liquid layer thickens atx→`, and also assumeU to be
positive when the thick layer advances. Standard ma
scopic arrangements fixing the asymptotic conditions ax
→` are possible, e.g.h→`, and hx52a for a liquid
wedge with the anglea or hx50, or h5A3U/aG for an
asymptotically flat film on an inclined plane.

Admissible asymptotics atx→2` depends on the form
of the functionM (h). If it is given by Eq.~34! with a.0,
the layer atx→2` may asymptotically attain the state o
lowest energyh5h05 ln(1/a) ~formally, this is possible at
zero inclinationa, although gravity effects are negligible i
films of molecular thickness!.

The starting point is Eq.~47! with the effective pressure
given by Eq.~45!. Removing extra parameters, by rescali
and integrating once, yields

h-~x!2„M 8~h!1G…h8~x!2aG1
U~h2h0!

Q~h!
50, ~49!

where the integration constant has been introduced allow
for a precursor film with the thicknessh0 at x→2`. A more

FIG. 2. The functionQ(h), compared with the respective func
tion for the sharp interfaceQ0(h)5

1
3 h3 ~dashed line!.
s

g
t

ls
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convenient form of Eq.~49! is obtained usingy5hx
252T as

the dependent variable and as the nominal thicknessh the
independent variable:

1

2
y9~h!2„M 8~h!1G…1

1

Ay
S U~h2h0!

Q~h!
2aGD50.

~50!

Equation~50! is free from singularities which are usuall
caused by divergences of either viscous stress or disjoin
potential, or both, in a layer of vanishing thickness. It can
integrated numerically starting from the asymptotics atx→
2`. The asymptotics of Eq.~50! obtained by expanding
nearh5h0 is y;c2(h2h0)2, implying an exponential decay
to the ‘‘optimal’’ thicknessh2h0}ekx, where the constantk
is a positive root of the characteristic equation

k32M 8~h0!k1U/Q~h0!50. ~51!

Fixing, say, the value ofU, one can use the shooting metho
to adjust the value ofG, satisfying the appropriate boundar
condition at infinity,Ay52a. A very fine adjustment of the
parameter is needed to advance to moderate values ofh. An
example of a computed dependence of the interface incl
tion angle on the nominal thickness of a dense layer spre
ing on a horizontal support is shown in Fig. 3.

V. NONEQUILIBRIUM MOTION

A. Viscously retarded motion

Equilibrium solutions withr varying along thez axis ex-
ist only at a particular constant value ofm, equal to zero in
the adopted gauge. Any deviation of this value sets the
terface into motion; the interface shift corresponds to eva
ration or condensation retarded by viscous friction. The s
plest case is steady propagation of the boundary between
semi-infinite phases. The stationary one-dimensional eq
tions in the frame moving with the speedc of the steadily
propagating interface are

~rv !z50, 2rmz1~ ĥvz!z50, ~52!

FIG. 3. Dependence of the interface inclination angleu on the
nominal thicknessh of a spreading dense layer for 3U50.5 and
3U50.2 ~as indicated by numbers at the respective curves!. The
values ofG found by shooting are 0.035 123 081 and 0.007 98
respectively.
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2488 PRE 62LEN M. PISMEN AND YVES POMEAU
wherev is the single velocity component in this frame; e
ternal forces are omitted, andĥ5z1 4

3 h is the renormalized
viscosity, also accounting for the divergence term in Eq.~9!.
These equations are readily integrated, yielding

j [rv5const, m5mc1 jR~z!, ~53!

where

R~z!5E 1

r

d

dzS ĥ
dr21

dz Ddz. ~54!

The flux j is related to the propagation velocityc as j 5
2c(r l2rv). The sign ofc is chosen in such a way that it i
positive when the dense~liquid! state advances. The consta
mc , which may be fixed by external conditions, represe
the driving force of the process.

It is reasonable to assume that the disequilibrium is we
so that bothmc and the constant fluxj are multiplied by a
book-keeping small parameterd when Eq.~53! is used in Eq.
~11!. The perturbed equation can be expanded in a u
way, and the relation between the fluxj andmc is obtained
from the solvability condition~31!:

mc52cE
2`

`

r08~z!R~z!dz. ~55!

The integral on the right-hand side can be interpreted
the effective friction factor. It depends on the basic dens
profile r0(z) as well as on the assumed dependence of
viscosity on the density. Ifr05rc1 r̃ represents a weakly
perturbed critical density,R(z)52hcrc

23r̃z , and the inte-
gral in Eq.~55! is proportional to the surface tension. In th
case of vanishing vapor density which interests us most,
suming h5const, leads to a divergent integral. The dive
gence is not eliminated also when the viscosity is prop
tional to density. Taking, for example,ĥ5nr, Eq. ~54! is
evaluated using the relationrz52r(12r) as R(z)5
2n ln@r0(z)/rc#. The weak divergence on the vapor side c
be eliminated by assuming a small but finite vapor den
rv . Then evaluating the solvability condition yields

mc52cE
2`

`

r08~z!R~z!dz52cnE
rv

r l
ln

r0~z!

rc
dr

52cn~11 ln rc!, ~56!

where mc is the chemical potential at the location with
chosen density levelrc .

The dense layer advances (c.0) at m.0. This causes
the chemical potential to drop at at locations with lower de
sity ahead of the propagating interface, thereby effectiv
slowing down the advance of the dense layer. A sharp d
in the dilute layer, leading to a divergent friction factor@Eq.
~55!#, causes substantial deviations from the zero-order d
sity profile, which will be taken into account in the next Se
V B.
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B. Evaporation flux

We shall consider the caser(`)→0, in view of a strong
viscous resistance that has led to the divergence of the e
tive viscosity in Eq. ~55!. Any vertical flux in this case
causes a substantial change of the chemical potential in
vertical direction, as well as a substantial distortion of t
vertical structure of the density field, as will be shown b
low.

In a one-dimensional setting, when the fluxj is constant,
the vertical structure is computed by simultaneously solv
the vertical component of the Stokes equation together w
Eq. ~11!. We assumeĥ5const ~which is justified for the
dilute phase, where the friction is most important!, and de-
notee5ĥ j . Usingr as the independent variable and den
ing w(r)5rz

2 , this equation can be rewritten as

m~r!5g~r!2 1
2 wr . ~57!

This relation can be used in the seconds of Eqs.~52!, yield-
ing a single equation defining the density profile in the pr
ence of evaporation or condensation. The right-hand sid
this equation can be transformed by replacingvz

5 j dr21/dz5 j r22Aw; an apparent change of the sign
the last term is due to the fact thatrz is negative, and has to
be defined as2Aw. The resulting equation can be integrat
once, yielding, after some algebra,

r2
d

dr S w

2r
2 f 8~r! D1e

Aw

r2
5a. ~58!

The integration constanta can be computed by applyin
this relation deep in the dense layer wherew5rz

2 vanishes.
This gives a52r l

2f 8(r l)[2p(r l). Thus a is identified
with the reverse pressure in the bulk of the liquid phase,
is not defined numerically as yet, since one has still to co
pute the shift of the liquid densityr l from its standard value
r l51 due to a shift of the chemical potentialm. Assuming
m!1, one can see that bothr l anda are of the same orde
of magnitude in the bulk of the liquid. One can also obse
that, as expected,a.0 at r l,1 when the dense layer re
cedes~evaporates!. Deep in the vapor phase, one should
m50, so that the standard vapor density is not affected. N
ertheless, if the vapor density tends to zero, the bound
condition at the vapor end cannot be applied in a straight
ward way, since the term containinge in Eq. ~58! is indefi-
nite. The solution strategy can be outlined then as follo
Picking a certain value ofa, we integrate Eq.~58! numeri-
cally and computem(r l) using Eq.~57!; then a new value of
a is computed with the help of the algebraic equilibriu
relations for the liquid phase, and the computation is
peated until it converges to a self-consistent solution.

This procedure can be improved, keeping in mind th
both m and e are small, though the relation between the
crucial for our theory, is still unknown. Equation~58! di-
vided by r2 can be formally integrated once more, and r
written in the form

1

2
w2r f ~r!1rE

0

r

K~r8!dr850, ~59!
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where

K~r!5er24Aw~r!2ar22. ~60!

Differentiating Eq.~59! yields, in view of Eqs.~10! and~57!,

m~r!5rK~r!1E
0

r

K~r8!dr8. ~61!

The integral accumulates in the ‘‘boundary layer’’ atr→0
where both terms in Eq.~60! diverge; thus computingw(r)
in this region is crucial. The scaling in the boundary layer
fixed by requiring all terms in Eq.~58! to be of the same
order of magnitude. The small parametere can, indeed, be
eliminated by setting

r5r e1/3, w5Fe2/3, a5Ae2/3. ~62!

The rescaled form of Eq.~59!, applicable in the boundary
layer, is, in leading order,

d

dr S F

r D211
2AF

r 4
2

2A

r 2
50. ~63!

Applying the same scaling to Eq.~61!, one can see, how
ever, that the generic estimate ism5O(e1/3), which is incon-
sistent with the equilibrium relationships in the bulk of th
liquid. This can be repaired by adjustinga in such a way that
the asymptotic value ofm at r→` vanishes in the leading
order. This is indeed possible, as proved by integrating
~63! numerically. The integration starts at somer !0 using
the asymptotic conditionF(r )5A2r 4 at r→0. A few sample
curvesm(r ) at different values ofA are drawn in Fig. 4; all
of them approachr→` at a certain asymptotic value whic
has to be identified withm(r l). The asymptotic value van
ishes atA'0.677. The residualO(e2/3) value ofm(r l), sat-
isfying the equilibrium relationm(r l)5a, can be obtained in
the next order by allowing anO(e) deviation ofa from the
chosen valueac'0.677e2/3.

Now the solution is completely specified. The chemic
potential peaks sharply in the dilute phase~Fig. 4!. This is
due to the constraint imposed by a constant flux in one
mension, requiring a large driving force in the transition

FIG. 4. The chemical potentialm as a function of the rescale
densityr in the case of evaporation (e.0). The curve correspond
ing to A50.677, with the asymptotic value ofm(r ) vanishing atr
→` is flanked by two curves with positive and negative values
m(`).
s

q.

l

i-
l

layer where a large velocity gradient is necessary to comp
sate for the decreasing density. The asymptoticsdr/dz5
2Aw52ar2 corresponds to a rather slow density drop-o
r}z21–a dramatic change, compared to the exponential
cay in Eq.~11!.

The relation between the chemical potentialm(r l) and
flux j 5ĥ21e, obtained above, can be reversed, identifyi
m(r l)5mc with the constant chemical potential in the den
layer driving the mass fluxj '(0.68ĥ)21mc

3/2. In the case of
a steadily propagating interface, this can be rewritten a
relation betweenmc and the propagation velocityc52 j ;
unlike Eq.~55!, this relation is now nonlinear:

c52~0.677ĥ !21mc
3/2. ~64!

C. Condensation flux

The above computation is valid only in the case of eva
ration (j .0 or c,0). A constant condensation flux (j ,0)
is, clearly, incompatible with vanishing vapor density.
positive value ofm is required to enable condensation, i.
an advance of the dense phase. This, in turn, implies a fi
vapor density, so thatm(rv)'rv at rv!1.

The condensation flux strongly depends on this resid
density. Equation~58! is retained with the sign ofe inverted,
but, since the expression multiplyinge is no more indefinite
at z→`, the integration constanta can be directly related to
rv :

r2
d

dr S w

2r
2 f 8~r! D1rv

2f 8~rv!2e
Aw

r2
50. ~65!

The appropriate rescaled variables are again given by
~62!, and the rescaled equation replacing Eq.~63! reads, in
leading order

d

dr S F

r D212
2AF

r 4
1

b2

r 2
50, ~66!

whereb5ueu21/3rv . The asymptotics atz→` or r→b is

F5k2~r 2b!2, k5
1

2b3
~12A114b6!. ~67!

This asymptotics corresponds to an exponential decay
density to its equilibrium value,r 2b;ekz at z→`.

Integrating Eq.~66! with the asymptotic condition@Eq.
~67!#, one can also see that in this case the chemical pote
defined by Eq.~57! reaches a constant asymptotic value
r→`. Checking the asymptotics of Eq.~65!, at r→r l , one
can see that the thermodynamic pressure on the liquid s
r l

2f 8(r l), should be equal that on the vapor side,rv
2f 8(rv),

and, hence, be ofO(e2/3). This is again inconsistent with th
generic estimatem5O(e1/3), implying, through the equilib-
rium relationships, the same order of magnitude off 8(r l).
Hence, as in Sec. V B, the value ofb has to be adjusted in
such a way that the asymptotic value ofm at r→` vanishes
in the leading order. The value found by shooting isb
'0.685~see Fig. 5!.
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D. Kinetically retarded motion

Taking into account ‘‘normal’’ viscous retardation on
~with ĥ'h) may exaggerate the actual phase transition r
since transport through a sharp density gradient is in fac
activated process, except, perhaps, in an immediate vic
of a critical point. When the interface is treated as a sh
discontinuity, this may be accounted for by introducing
finite evaporation rate~involving an appropriate activation
energy! and a condensation ‘‘sticking coefficient.’’ Bot
quantities are difficult to estimate quantitatively but, in pri
ciple, they insure a finite evaporation or condensation r
even under conditions when viscous retardation is absen

In the framework of the phase field theory, kinetic reta
dation can be accounted for by replacing the stationary eq
tion ~2! or ~11! by the respective gradient flow equation co
taining a large relaxation timet. In one dimension, we hav

tr t5rzz2g~r!1m. ~68!

On the infinite axis, this equation~with m5const) has a
solution steadily propagating with a speed dependent onm,
and satisfying the stationary equation in the comoving fram

2tcrz1rzz2g~r!1m50. ~69!

In the case of weak disequilibrium,m5O(d)!1, the
propagation speedc5O(d) is easily computed, as in Se
V B, using the solvability condition of Eq.~69! expanded in
d,

c5
m~r l2rv!

ts
5

6m

t
, ~70!

wheres is defined by Eq.~14!, and the numerical value i
given for the cubicg(r).

Equations~55! and ~70! represent two opposite limit
when, respectively, either viscous or kinetic retardation
prevalent. A rough estimate for the lower bound of the
laxation time ist} l 2/D, wherel is the thickness of the dif-
fuse interface andD is the diffusivity. The characteristic time
of viscous retardation on the same length scale istv} l 2/n,
wheren5h/r. For common liquids, the Prandtl number
5n/D is large, andtv /t}D/n!1. Viscous retardation may

FIG. 5. The chemical potentialm as a function of the rescale
densityr in the case of condensation (e,0). The curve correspond
ing to b50.685, with the asymptotic value ofm(r ) vanishing atr
→`, is flanked by two curves with positive and negative values
m(`).
e,
n

ity
p

te

-
a-

:

s
-

be still felt at larger scales, complementing the kinetic ret
dation near the diffuse boundary. At Pr@1, the flow velocity
is nearly constant throughout the transitional boundary
gion, and the propagation velocity defined by Eq.~70! can be
viewed as the velocity of the slow drift of the interpha
boundary due to the evaporation or condensation in
frame moving with the local velocity of the ambient fluid. A
a fixed propagation velocity, the increments due to the v
cous and kinetic retardation are additive. In the dense la
the former is negligible at Pr@1, although it becomes impor
tant in the dilute phase, as we have seen in the prece
subsections.

When Eq.~68! is coupled to hydrodynamics,r t should be
replaced by convective derivative, and the equation can
rewritten using the continuity equation~7! as

tr¹•v1rzz2g~r!1m50. ~71!

This shows clearly that kinetic retardation is effective, as
should be, in the diffuse boundary region, where the fluid
compressible. The scaling of the lubrication approximat
~Sec. IV A! remains consistent only if the relaxation timet
in Eq. ~68! is of O(d). With this scaling, the speed of th
vapor-liquid interface displacement is ofO(d2), i.e., of the
same order of magnitude as the vertical velocity.

E. Spreading assisted by interphase transport

The results of the computations that have been carried
so far in this section for an infinite fluid layer separated by
diffuse vapor-liquid interface can be applied to the spread
problem after minimal modification. In a bounded layer, t
chemical potential in the liquid phasemc , driving the evapo-
ration or condensation flux, is determined by the combin
action of surface tension and disjoining pressure. The
joining potential can be computed with the help of the so
ability condition, as in Sec. III D; the respective formula
remain in force, since the flux-related drop of the chemi
potential occurs in the dilute phase only, and is negligible
the diffuse interface region, where the translational eig
function is localized.

The basic equation of the lubrication approximation@Eq.
~47!#, is modified in the case of nonequilibrium spreading
an added evaporation or condensation term:

]h

]t
5 j ~P!1h21]x@Q~h!Px#. ~72!

The expressions for the evaporation or condensation
j (P), and even the orders of magnitude, vary depending
the physical situation under consideration, according to
calculations presented, in the three preceding subsect
with the effective pressure defined by Eq.~45! replacingmc .
This determines, in turn, the relative importance of the t
terms on the right-hand side of Eq.~72!. In the case of vis-
cously retarded motion with finiterv , j happens to be pro
portional toĥP, although the term representing the horizo
tal transport through the liquid phase is of orderĥ ]2P/]x2

and is negligible compared to the evaporation or conden
tion term in the lubrication limit, when the horizontal deriva
tives are small. In this case, flow across the isodensity lev
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associated with evaporation or condensation, driven by
deviation of the chemical potential from equilibrium, wou
be larger byO(d21) than hydrodynamic ‘‘horizontal’’ mo-
tion. Therefore, it is likely that this does not represent
most usual situations, where evaporation is hindered by la
activation energies. In the present model a way to enter c
sistently this activation effect is to make the evaporation fl
and the horizontal transport of the same order of magnitu
This can be done by imposing anO(d21) relaxation timet.
Although this connection between a molecular quantityt
and a macroscopic length scaled may look a bit artificial,
this represents a distinguished limit where a balance betw
factors of different physical origin is attained.

The last situation that we have to consider is the one o
vapor phase of vanishingly small density, when the evapo
tion flux is related to the jump of chemical potential asj
}mc

3/2. In this case, it is possible to have the evaporation fl
and the horizontal transport of the same order of magnit
with the choice of scalingt5O(d21/2). A slow density de-
cay caused by evaporation, which might lead to a wea
~logarithmically! divergent horizontal flux, may be a disturb
ing factor, but this is certainly an artifact caused by a co
stant flux in a one-dimensional setting, and not transfera
to two-dimensional spreading. It is of interest to note at t
point that, whenj is dominant, and in the absence of ho
zontal flux~which would happen far from a solid boundary!,
one recovers the classical Thomson expression for the ev
ration driven by the curvature of the liquid-vapor interfac

Mass transport across isodensity lines should become
ticularly important when the lubrication approximatio
breaks down. This should happen near the ‘‘contact line’
the case when two alternative fluid densities near the s
wall are possible~see Sec. III B!. If, say, the boundary den
sities are rsv!1 and rsl512a, a!1, the three-phase
‘‘contact line’’ can be viewed as a sharp transition betwe
O(1) positive and negative values of the nominal thickn
h, such thate2uhu!1 on either side. This can be treated a
shock of Eq.~47! or ~49!. The Hugoniot condition, which
should ensure zero net flux through the shock, is the equ
of chemical potentials on both sides. Unfortunately, this c
dition cannot be formulated precisely, since the sha
interface limit of the surface tension term is inapplicable
the shock region. Moreover, our test computations of
profile of the dense layer using Eq.~50!, with different
boundary conditions imposed on the ‘‘shock’’ ath5h0,
showed that the spreading velocity is very sensitive to
conditions on the shock.

It therefore remains essential to solve the full system
density field and hydrodynamic equations in the shock
gion whenever a sharp transition between alternative sur
densities is possible. The outer limit of the resolved sho
structure should be matched with the lubrication equati
~47!, ~49!, or ~72!. The transport across isodensity lines
the shock region alleviates the viscous stress singularity
maining in the lubrication model. In its turn, the latter pr
vides a gradual transition to the sharp-interface limit at la
distances.
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VI. SUMMARY AND PERSPECTIVES

As is well known, the phase field model provides a sou
theoretical basis for studying equilibrium capillary pheno
ena in fluids. It allows us to derive, in a straightforwa
manner, classical formulas for the capillary pressure and
the equilibrium contact angle, contrary to formulations bas
upon the introduction of van der Waals forces diverging
short distances. We have shown that this model can be
tended in a natural way to study a thoroughly dynami
spreading process. The lubrication limit, where the cont
angle is small, allows us to derive consistently an equation
motion for the liquid-vapor interface interacting with th
solid surface. In the static limit, this equation yields back t
equilibrium Young-Laplace theory.

Evaporation or condensation are processes that are
cluded in this model. The driving force for the evaporation
condensation is the imbalance between the pressure
across the interface and its equilibrium value. Similarly, a
consistently with Seppecher’s@18# results, an advancing o
receding contact angle differing from its equilibrium valu
makes the contact line a source or sink for evaporation
condensation. We suggest checking this interesting phen
enon experimentally by observing the accumulation o
nonvolatile tracer diluted in the liquid phase that would
left by evaporation near a moving contact line.

Our analysis indicates that kinetic retardation of the int
phase transport is essential for a well-balanced theory a
from the critical point. The available simulations of the m
tion of a diffuse interface near a three-phase contact
@18,19#, taking into account viscous retardation only and,
effect, assuming evaporation or condensation to be as ea
plain advection, may grossly overestimate the rate of in
phase transport, but the latter remains essential even whe
order of magnitude is reduced due to kinetic retardation.

The present theory extends itself in a very natural way
problems like film breaking. The latter situation is interesti
also because it should allow one to approach thermodyna
cal critical points experimentally, where phase field mod
certainly apply, although things should become complica
if the solid-fluid interaction is added to the critical phenom
ena near a moving contact line.
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